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PIANE THERMOEIASTIC DEFORMATION OF INTERNALLY HEATED
ANNUTAR DISKS OR HOLIOW CYLINDERS

By Franklyn B. Fuller
Ames Research Center

SUMMARY

A plane elastic problem of bodies bounded by concentric circles and heated
at the inner boundary is solved in the "uncoupled, quasi-static” approximation.
The heating takes place by surface heat transfer, with limiting cases corre-
sponding to sudden temperature change and to constant flux of heat. The stress
boundary conditions treated are those of constant pressure at the inner wall
while the outer wall may be either free or rigidly restrained.

The time-dependent results for stresses, displacement, and temperature are
calculated and shown for several cases with varying values for the parameters
specifying heat transfer and wall thickness. The effect of varying Poisson's
ratio is also examined. Formulas for steady-state distributions of the quanti-
ties of interest are also given, as well as some approximate results that can
be used for very small times.

INTRODUCTION

There are many engineering uses for cylindrical vessels or annular disks,
and some of these involve differential heating of inner and outer cylindrical
surfaces with consequent thermal stresses. Some examples are given by Heisler
in reference 1. The present work was begun in an effort to calculate the
thermoelastic behavior of some disks used in a constricted arc wind tunnel, in
which arc-heated gas flows through the central hole of the disks. The formula-
tion of the problem and the subsequent solutions are, however, cast in general
terms and the results may be adapted to a variety of specific applications.

The calculation of thermoelastic stresses in circular cylinders has
received a good deal of attention in the past, as attested by the contents
and/or bibliographies of references 1-8. Most of the earlier work was con-
cerned with the solid cylinder (or disk) and the paper of Jaeger (ref. 9) is a
useful collection of numerical and graphical results for that case. Hollow cyl-
inders (or annular disks) have not, however, been so well covered. The early
papers of Dahl (ref. 4) and Kent (ref. 7) give analytical results for the pres-
ent problem, but in reference 4 the numerical results apply to either thin-
walled cylinders or to thick-walled ones with special temperature distributions.
In reference 7T, there are some very brief numerical examples given.

More recently, Trostel (ref. 10) has given a general solution for a hollow
circular cylinder of finite length, from which are extracted some results for
the infinite-length, or two-dimensional, case. A method for approximate solu-
tion of the (two-dimensional) hollow cylinder problem (among others) is set out
in reference 11, and the case of a thin-walled cylinder with internal heat gen-

eration is treated in reference 12. This 1ist is certainly not exhaustive, but
serves to illustrate the fact that there does not seem to be any systematic
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presentation of thermoelastic stresses for the two-dimensional body bounded by
concentric circles and undergoing various types of heating. This is probably
because, as noted in reference 1, there is a new parameter to be considered
over those for the solid body, and the resulting analytical expressions are
rather formidable unless there is an electronic computer available.

It was therefore considered that an extensive set of calculations of ther-
mal stresses in the two-dimensional elastic case (annular disks or long hollow
cylinders) would be useful in several fields of engineering. This is particu-
larly so for the disks with thick walls where approximate results are not so
simply derived as for thin walls. The theory to be used in solving this prob-
lem is the one aptly called "quasi-static, uncoupled" in reference 2. In this,
the dynamic effects of heating, and the effect of volume change on heating, are
ignored. As a result of this approximation, the heat-conduction problem can be
solved first, and the result used in determining stress. Circumstances under
which this decoupling is permissible are discussed in reference 2. There,
examples in which more exact solutlions are obtainable are analyzed, and some
indications ag to the size of the error are deduced.

In a rough way, it appears that the gquasi-static uncoupled solutions are
valid when the product of the combinations

2
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(Ti is the initial, strain-free temperature, p the density, cy the specific
heat at constant volume of the material, ¢ the rate of volume dilatation, and
T the rate of change of temperature. The remaining symbols are defined in the
appendix.) The smallness of the second ratio means that pronounced lag between

temperature and displacement should not arise, nor should vibrations be induced.
(See ref. 2 for a complete discussion.)

The manner of heating the body in question is of some importance. In much
of the thermal stress work the initial condition of sudden change of tempera-
ture at some surface is taken. The overly conservative design requirements
from this condition are pointed out by Nddai (ref. 13, pp. 397-398) and by
Heisler (ref. 1). It is more realistic to consider that there is a surface
heat-transfer resistance, and to alter the boundary conditions accordingly.
This causes some increase in analytic complexity and, as a result, a new param-
eter appears, namely the Nusselt, or Biot, number which involves the surface
heat-transfer coefficient.

Once the transient temperature distribution is known, the stresses may be
determined. For the case studiled, this amounts to evaluating certain integrals
of the temperature distribution (as given, e.g., in ref. 14) together with con-
stants to fit stress boundary conditlions. These conditions are here taken to
be that there is a fixed pressure acting on the inner surface, while the outer
surface may be either free or rigidly restrained. Intermediate cases of elas-
tic restraint can be interpolated between these extremes.

Formulas will be given from which temperature, displacement,and stresses
can be calculated for arbitrary position and time. Numerical results which
sample the full range of the parameters affecting the character of the solution
will be presented and discussed. These should be sufficient for a designer to
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obtain estimates for stresses in cases other than those directly shown. Steady-
state results are quite simple and are easily calculated for any case of intereste

At the opposite extreme from the steady-state distributions are the ini-
tial ones, that is, the temperature and stress distributions which occur
shortly after the onset of heating (or cooling). The starting distributions
are of considerable interest because the gradients of temperature and hence of
stress are most severe then (when there is a surface heat-transfer resistance).
They are difficult to calculate by use of the general results, owing to slow
convergence of series expansions. However, operational techniques (see
Goldstein, ref. 15) lend themselves to approximate calculation of these short-
time results, and a number of such formulas are given.

ANATYSTS

As stated in the Introduction, the quasi-static, uncoupled approximation
in thermoelasticity will be employed. In this, the temperature distribution is
first determined as a solution to the linear heat-conduction equation, and then
the temperature function is used to determine displacement and stresses.

Temperature Distributions

First, the temperature distribution for a region bounded by concentric
circular cylindrical surfaces without variation along the axial direction can
be written out. The problem is also specialized to allow only radial variation
of all quantities. There is to be a choice of three boundary conditions on the
temperature or its gradient (flux) at the inner cylindrical surface. The equa-
tion of heat conduction is, in the absence of extraneous heat sources,

= L 10T _ 1297

a2 T Aot

where the symbols are defined in the appendix. The thermal diffusivity k is
taken to be constant. It will be convenient to introduce the dimensionless
variables (see sketch)

p=a"tr, P =a" " , T = ka~%t
where & 1s the outer radius of the

disk and b the inner. The equation
of conduction becomes

3T 1 dT _ dT
ol , 107 . of 1
502 ' P op o (1)

As initial condition, always

T(p,0) = Tl (2)




where T, is a temperature at which the material is strain free. A boundary
condition at the outer surface r = a, hence at p = 1, is always to be

T(l:T) = Tl (3)

The boundary condition at the inner surface, r = b, or p = Py, Will be one

of three:
Case A T(pg,T) = Tg (ha)
Case B -k ézl = aF, (4v)
dplp=pg
where FO is the heat flux,
Case C -k of = ha(To - T(QO,T)}
ap p:po |-
or (k)
i
'B—T‘ == TJIE'J’(TO - T(QO’T)J
ap P=0p oL - J

where h dis the surface heat-transfer coefficient and m (: hb/k) is the Biot
number. The boundary conditions are here taken to be independent of time, for
t > 0. More complicated time variations can be treated by use of Duhamel's
theorem (ref.16) or by direct use of the convolution process for Iaplace trans-
forms. In the last boundary condition, C, let m — w. Then the flux may be
loosely considered as becoming infinite such that the temperature at p = pg
Jumps suddenly to T, at t = O, and thereafter remains at T,. Thus, this limit
corresponds to case A. On the other hand, if the boundary conductance h - O
while the reservoir temperature TO becomes very large, it can be thought,
again rather loosely, that this corresponds to case B, with constant flux.
Thus, when a solution for case C has been obtained, the two limiting cases

m =, O should lead to solutions for cases A and B, respectively. This can,
of course, be checked by actual calculation.

The problem posed in equations (l) to (M) can be solved by standard tech-
nigues; in fact, a solution for a more general problem, from which the present
one can be derived, is given in reference lo. However, in view of the need
which will arise later for the Iaplace transform of the solution, it is conve-
nient to go very briefly through the process. The Iaplace transform of a func-
tion is here denoted by a bar, thus T

)= [ e (1)an



In terms of these new variables T and p, it is now necessary to solve the
differential equation

- qZT = -T, (1a)

where

and to make the solution conform to the appropriate boundary conditions at
p = pgsl. The last equation is recognized as Bessel's for modified functions
of order zero. The complete solution is then

T = AIy(gp) + BK,(ap) + p~'T,

where Iy, Ky denote the modified Bessel functions of first and second kind as
defined by Watson (ref. 17). The determination of the constants A, B is made
by means of boundary conditions; only condition C (eq. (ke)) will be consid-
ered for this purpose. The result is the transform

Te-T _ m Io(gp)Ko(g) - Kol(ge)Io(g)

Ty - T,

‘olg

IO(Q)(quKO'(qu) - me(qpo)l - Ko(q)ipoqlo,(qpo) - mIo(qpo)J

(5)

Inversion of this transform requires knowledge of the zeros of the denom-
inator in the complex p plane. The pole at p = O will contribute the

steady-state result for the present problem, which is seen to be nonzero by
physical reasoning. It is

Telosm=)-my Io(ap)Ks(a)-Ko(ae) To(a)

TO—T]_ p—)o

' 1 r
Io(q)[pquo'(qoo)—me(qoo)J-Kb(q)[ooqu'(qoo)-mIo(qpo)}

m log(1/p)

"1 +nm log(1/pg) (5e)

The remaining zeros of the denominator in equation (5) are real and simple.
If they are denoted

Hn 3 p = -un®



and the complex inversion formula

+1 T
TC-T1= 1 7 OoepT Tc-Tlp y> 0
To - T, Eﬂij_iw T - T, ?

is used. then after some algebra. and use of relations for the Bessel functions
from reference 17, it is found that

Ta- Ty __m log(1/p)
T, - T, 1 +m log(1/eo)

)
~lp
+ mix e

2
n=1 [pounJl(poun) + mJo(poun)] - (m® + po2un2) Jo2( 1y )

25 Jo(“n) pop-nJl(polJ‘n) + mJo(pop-nﬂ [Jo(ppn)Yo(P-n) - Yo(pP-n)Jo(Hn)]

(6)

The eigenvalues {p are determined from the equation

Jo(y) = mdo(Pobn) + po“nJl(pQ“n) (63)'
Yo(“n) mYO(DoHn) + pop'nYl(pOp“l’l)

From the result for the mixed boundary conditions, case C, given in equa-
tion (6), the results for cases A and B (see egs. (4a) and (4b)) can now be
obtalned. First, to obtain case A, m 1is allowed to become very large, giving,

in the limit

A 1 AN

/1 =
T 7 log'ﬁ) + 7 Z{: e Iolom) I (pean) [ (pay ) Yo () - Yo(po’“n)Jo(ro“n)1
To = Ty log(%f) n=1 o (pgan) = Jo*(an)
o

(7)

Where
Jolon) _ Jo(ogan) (72)

Yo (ay) ) Yo (Pon)

and ap dis written for the typical eigenvalue in this case to distinguisr it
from that for case C.

To determine the solution for case B, write m = h(b/k) and allow the
product h(To - T,;) = m(Ty - T1)/(b/k) to approach unity (corresponding to
(aFy) =1 in eq. (4b)) while h ~ 0. Then,



Tg - Ty _ tog L+ x Ze-anz'r To(B) T (peBy) [T (B )Y (By) - Yo(pBy) T (By)]
P n=1i pozn[Jlg(pan) - JOZ(Bn)]

(8)

where

Jo(By) _ Jl(poﬁn) (8a)
Yo(Bn) Yl(pan)

Determination of Displacement and Stresses

When the temperature distribution in the material is known, it is possible
to calculate the displacement u and the stresses oy, 0y- Because of the
radial symmetry, the shearing stress T.g4 vanishes everywhere. On this
account, the maximum shear stress at any point is simply (lIE)IGr - OG‘-

Plane stress.- If a body is thin, as a plate, in one dimension (say z),
and all the forces and stresses lie in the plane of the body, a two-dimensional
problem results, in that all stresses 0y, Oyy, Oxp vanish and the remainder
are free of 2. (See ref.l*.) The formulas for displacement and stresses are
then (ref. lﬁ)

~T

u = l_%;lkA) a(T - Tl)x dx + C.r + Cgr_l (92)
r
E E 1 - v
= - —= T - T d —s| C_ (1 - C b
oy = /;) a( Jx dx V2[ R J (9v)

T
E - - o B 1-v
gg = k/; ofT - T))x dx - Fo(T - T,) + E_T_CE[Cl(l + V) + Cp = ]

(9e)

The constants C, and Cz 1in equations (9) are to be determined by means
of stress boundary conditions. As mentioned above, these will be such that
there is a pressure pg acting at the inner surface r = b, while the outer
surface, r = a, 1s to be either stress free or rigidly restrained. TFor the
first case, that of free outer surface, the constants are to be determined by
means of

Or = ~Po at r

op = 0 at r

I
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Now write

D
U =LY 1(p,p057) + Dyp + =2 (10a)
a(ly - Tl)a P o
Oy D.
e S I(p,pg;T) + —L (1 +v)D, - (1-v)2 (10b)
“<To _ Tl)E 02 1 - v2 1 p2
O fl\ - fl] D
S TR TP G e L AR CRR = |
a(ly - 1)E 0 o= 1y 1 - AL o
(10c)
where
O 2(p,r) -
I(p,005T) = \jr Tl} T = p, APy (204)
Po o~ "1
The above boundary conditions give
D, = (1 - v) o po* + I(1,p0571)
1 1. o2
o)
Do = (1 + v)p,2 po* + I(1,p037)
= o
:l_ - po2
where
Po
Po* = ! m
a(T, - Jl)E

If the quantities on the left in equations (lOa) through (10c) are denoted
by u*, op*, og* for the present case of stress-free outer boundary, there

results
I(l} Po s ’T)
1 - 0%

1

u¥ = —%—V 1(p,0057) +

[(1- vie + (1 + v) -98—2}

(lla)

02 * -
+_.9&[(1- v)p + 22 Y
1 - 2L e



I(1,pq;T) 062 PEPL*
op¥ = - L 1(p,p0s7) + (1 Po; - O;) +——=(1- %Z) (11p)

02 1 - poz P 1 - pOZ
T -T T(1 . p2p ¥
¥ = -op¥ - 242 (1,0057) + 2 __9;895 (11e)
TO - Tl 1 - pOZ 1 - pO

Next, the boundary conditions of rigid restraint of the outer surface and
pressure p, On the inner surface give

po* + I(1,p457)

Dl = "(l - V2)po2
(L -v) + (1 +v)p,?

(1 - vIpg* - (1 + V)I(L,0,57)

Dz -
(L -v) + (1 + v)ps2

il

(1 + v)py2

Denote now the quantities on the left in equations (10) by u', o', G@’.
Then

at o= LtV Y ) I(1,p05T) . ) Bo?
= I(o,0057) - (L + v) R T V>~02[(1 o+ (1 + v) =2 }
?O,g(lt Vz)po* 1. o

(1 - v) + (1 + v)p,2 <§ 9) (12a)

1+ V)I(l:PoiT) <po2 ) 1>

p2

Q
H
il

- L 1(e,e05T) + -
P (1 - v) + (1 + v)p2

o Zp * - ,
- - SRS [(l + V) + L 21’} (1)
(L -v) + (1 + v)pog_ P



og' = ~op" - S NPT C R o7 I(1,005T) _
To - Ty (1 -v) + (1 +v)eg
o) 2 *
- 2(1 + V) oPo (:LQC)

(L - v) + (1 + v)py,2

It is interesting to note that when the outer boundary is free, the
stresses Or*, 05% do not depend upon the Poisson's ratio v. 'lhis is not
true for Gr' and 09’, that is, when the outer boundary is rigidly restrained.
In either case, however, the radial displacement does depend upon the Poisson's

ratio.

Plane strain.- Here the ideallzation is that of a long body in which all
guantities are independent of axial distance. In this situation, there are
axial stresses o0, acting at the ends of the cylinder of magnitude

Oy = 0, + Oy

These can be removed by a uniform axial stress applied so that the resultant
force on the ends is zero. By Szint Venant's principle, this self-
equilibrating system acting on the ends will affect only locally the stresses
in the cylinder (see ref. 1u),

In order to obtain formulas for plane slrain problems from the above
results for plane stress, it is only necessary to substitute E/(l - v2),
v/(L - v), (1 +v)a for E, v, a, respectively. 'hus, for example, equa-
tion (11b) becomes, for plane strain,

I(1,00;7) (. 2 Zpo ¥
o % = ___;;__[1 j? I(D,DOJT) + _S_LEQLIZ (} _ po%) + Po=Po <§ - L J
(L-v)L o 1 - P © b po® i
N GI‘
a(TO Tl)E

The Steady~State Distributions

In all cases, the steady-state temperature distributions are represented
by the formula

T ) - T
(p, ) 1. 1o 1 (13)
ik p
ref
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For the three heating modes the constants take the following values:

-1
1
1 —_
(og po>

=b/k ; N=1

o1+ e ()]

These temperatures therefore decrease monotonically between p = p, and p = 1.
The stresses, as given in equations (10), depend upon the integral

Il

Case A Trer = Tp - T, 3 N

Case B Tref

Case C T

=
e}
1
-3
-
=
]

ref <

P 1(p, ,®) - T
I(p,pg3®) = f l; . 1 p, dp, = —g[pz log 0 - Po2 log pg - %(92- 002)]
e re

(1k)

It is interesting to determine whether the steady-state stresses have an extre-
mum in the interval Po <p<l.

Consider first the stresses as given in equations (10) before any stress
boundary conditions are imposed. Then,

1 dop o N 2 Do
—_— = T . - =1 4+ o
aTperE do  p3 (P, 005) p &P p3 1 + v

1 dog 2 - N N_ 2 Do
—_— 2= - = T 30) 4+ = Jog P+ = - =
ol pE 4P p3 (0, P035%) p 8 P P31l + v

An extremum of O, occurs at p = Poyr Where

L Dg
P> = p02<l + log ——Epi > FFT (15)

When the value of Dy, found above for a stress-free boundary is used,

*2 poz < 1 b *>
X" = -9 __ (log —= + 4 =9 (15a)
cr T T o2 g oo2 N
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It is interesting to note that when the internal pressure is neglected, the
critical point for o, 1in the free outer boundary problem is completely inde-
pendent of all elastic and thermal parameters, depending only on the geometri-
cal quantity p,, the ratio of inner to outer radii of the body. Also, since
both p,* and N are positive quantities (when Tpep > 0), it is seen from
equation (15a) that a sufficiently high internal pressure P, can cause the
position of the extremum, p = pP.,, to move beyond p = 1.

Examination of the derivative of circumferential stress indicates that no
P din pyg < p <1l gives an extremum. Hence, the (algebraically) largest and
smallest values of circumferential stress must occur at the boundaries, at
least in the steady state.

In the event that the outer boundary is rigidly restrained, equation (15)
gives for the critical radius

} 1 2(1 - v)p*
1+ (1 -v) log <§5> + -————ir——Q— (6)
(1 -v) + (2 + v)p,®

2
Por = 2057

Again the circumferential steady-state
stress is monotonic in py < p < 1.
With the rigidity condition, the wvalue
of pers, the position of an interior
extremum of radial stress, does depend
upon Poisson's ratio Vv, even when the
7] internal pressure p, 1is ignored.

In figure 1 Por is plotted for
free and for rigid outer boundaries.
The latter are drawn for three values
To of the Poisson ratio Vv, and p, is
. . always taken to be zero. It is seen
F 1g;'gziii sfﬁzzzliﬁstﬁi Zfsz:z;eszz%:es °f  that tlle effect of change of Poisson

(egs. (15) and (16))-. ratio 1s not great, even over the
extreme range O < v < 0.5.

4 4

Initial Behavior of Solutions

The series derived agbove as solutions for the temperatures and their inte-
grals which are used to determine stresses are not well adapted for use with
small values of the "time"™ 1, say for 7 < 1072. The damping effect of the
exponential terms is then delayed, and many terms of the series must be evalua-
ted. Although this is not a serious disadvantage when the summstions are cal-
culated by an electronic computer, it is often useful to have a simple
expression for the initial behavior of a solution. The applicability of the
present results is thereby enhanced since cases not covered by the specific
calculations given later may be treated. The eventual distributions in the
steady state are known from the previous section.

12



A particularly advantageous way of obtaining the small T results was
popularized by Goldstein (ref.l5). This involves the use of asymptotic expan-
sions of the Laplace transforms (Goldstein used operational concepts) of the
various functions of interest, followed by term-by-term inversion of the
results. A discussion of the process, with justification, can be found in ref-
erence 18.

Approximations for the temperature.- To start, consider the result given

in equation (5)>fbr the 1@place transform of temperature:

Tc- T, _n ~ B,(ap) (17)
TO - Tl b mBo(qDo) - qooBl(qpo)
where
Bo(z) = To(2)Ko(q) - Kol2)Io(q) )
By(2) = T,(2)K,(a) + K, (2)T(a) S ECN

Bo'(Z)

J

The asymptotic formulae for the modified Bessel functions will be needed; from
reference 17,

. e 1 )
Io(w) N <; + o

Il(w) ~ \/'Z%'o <1 - %)

-Ww
= 1 - 4

N 27w 8w

> (18)

Ko(w) ~ =

-W
K (w) ~ n £ 1+-§->
1 N 27w 8w

J

where terms O(l/w2) in the parentheses have been dropped. From these results,
the quantities By, Bl can be found:

13
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The last results can now be substituted in the transform equation (17),
and the following approximate (p - o) formula is found:

? (18a)

B, (w) ~

To-T, n [e-q(p-po) 11-p e"G_(p-Do):' (19)

To = Ty ~.¢pop i

p(a +7) 87 P palq +7)

where

7=‘8%_;(3+po+8m)

In this approximation, terms in e-zq(l'po), etc., have been dropped, on the
suppositions that for the present problem there will be most interest in the
region where P - p, 1s small and that 1 - p, is not small. If the latter
condition is violated, so that the wall is quite thin, some of the terms
neglected here could easily be included. These terms represent the influence
of the outer wall. It is an advantage of this expansion method that such
influences can be identified and the ones of interest in particular cases exam-
ined separately.

The transform in equation (19) can now be inverted; the result is, for
small values of T,

TC(QJT) = Tl

Tg - T,
\1l/2
. _m 1-p(1 ) P-pPo_1-op(T l__gp-p)ﬂ
~ WeoP {[l T <7 P poﬂ Y Lp <ﬂ> N s
- <1 + s —l—é-p—p>exp[7(p - po) + 737] erfe <3—'——99 + 7~/‘>} (20)
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It will be noted that equation (19) is not fully expanded in powers of
q~! but, rather, the denominator (g + ¥) is kept intact. In the limit
t = 0, results of the two processes must, of course, coincide, but there is a
physical reason for using the expansion as in equation (19) rather than a com-
plete expansion in powers of ¢g-%. In the approximations used above, where the
effect of the outer wall is neglected, and if curvature is also neglected, the
problem for the hollow cylinder is like the same problem for a semi-infinite
slab. The one-dimensional slab problem is expressed by the equations

o%r _ dr . ; -
g}—(-é = g H T(X,O) = Tl s }(—-):1{0% T(XJT) = Tl

. or =m[T - T(0,T)]

X=0

The solution for this problem, in transform notation, is

T - T -gx -gx -1
I=mn e =n & q <} + m>
To =Ty p(a +m) Pd e
oo &7 _m, md _
=m 79 <? o] + EE o .)

The partial sums of the last series can be interpreted as successive approxima-
tions to the solution of the problem in question. For, if

() (x,r) = T,

and a sequence of solutions of the diffusion equation is defined by the condi-
tions

1
H

T(i)(x,O) N

Ln 1) ;) = 1,

- ag(i) = [T, - 1172 (0,7)]

15



then the Iaplace transform of the quantity (T(n)(x,T) - Tl)/(TO - T ) coin-
cides with the nth partial sum of the series expansion above. Thu%, there 1is
introduced by the expansion in powers of q~t an additional approximation in
which the boundary condition 1s never exactly satisfied. This would seem to
explain why the results obtained in the original problem by keeping the term

(¢ + 7)™ are somewhat better than those found by straightforward expansion in
powers of g~ 1, as will appear below when comparison with machine-computed

results is made. For reference purposes, the expansion in terms of q~t is
T (p,T) = T - 5 / A -
C“ ’ — L. _m [QTl/Zierfc E_:.g + ; _];_ - ; - L .]_-.i_e.I_n Ti2erfe E___QO]
lo - ll PoP L 2\/—,‘— 2 \Po P Po PN
(20a)

The functions i'erfc x are defined as

[oe]
Jf i terfe £ At
x

Jf e-gz dg
X

Tabulations of this integrated error function can be found in references 16 and

19.

I

illerfe x

i%erfe x = erfec x =

Sl

It is found that the results given by the approximate formula (20) are
adequate for the smaller values of Biot number m, but when m > 1, accuracy
falls off. ‘This situation can be remedied by writing

Te - Ty Ty = 1y N To - Ta (20b)
To - T4 Ty - Tl lb - Tl

and expanding the two terms on the right side separately. The expansion for
Tp will be given shortly, and the difference term is approximated by the fol-
lowing expression:

. Po 1 (4k 21 - P~ Po
i3 -\/; { [1 & \%s + 1 D>J exply(p - p,) + 7r2rlerfc <2\/_T_ + 7«/?)

(i ;> erre 27 Po (20c)
8y \Po P \C
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The small T results for cases A and B of heat input are

TA(Q;T) - T, N/Eg {:( é

> expld(p - py) + d3r]lerfe <j J_ + dJ{>

11-op o - po:}
- = erfe ———0Q (21)
d  8p oNT
where
a=% 1
8po
»IITB(DJT)- Tl; l <l l
= erfe
b/k BJPoP 8p

- expl[B(p - oy) + BZrlerfe <ﬂé-7?& + Bﬁ)}

_1-p<> [<°"ui>2J+<p-oo>lépoerfcf_ﬁ

(22)

where

Comparisons of the above approximate results with some machine-calculated
ones appear in figure 2. The latter are based on the series given in equa-
tions (6), (7), and (8). The cases m = O, 0.1, 1.0, 10.0, ® are shown with
P = 0.15.

It should be mentioned that the quantity plotted as V
as m<1lor>1. Tor m:> 1,

¢ differs according

T~ - T
Vo = =2
To - Tl
and as m —> ©
1im V =V
m—>00 A

which can be verified by comparison of equations (6) and (7). On the other
hand, for small m,
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Figure 2.- Comparison of exact and approximate (small 1) results for temperature.




1im TC-Tl =TB-T:L
mso m(Ty - Ty) b/k

as discussed at equation (8). The quantity Vo is thus defined as

v

1% -1
C mT

o~ T,

when m < 1, so that there 1s a smooth approach to the 1imit as m = O. Note
that the temperature ratio C - T, / for m< 1l is obtained by
multiplying the shown quantlty Ve by m ThlS does not hold in the limit

= 0, where the quantity graphed is
Tn - T
VB = .B___J.‘

b/k

since the temperature analogous to the ambient T, 1is then undefined. Curves
are drawn for values of p generally near the inner boundary, which is the
region of greatest interest at smell times. The agreement between the approx-
imate and exact results is seen to be gquite good up to about 1 = 0.01l, but the
approximate results become more and more in error thereafter.

Also shown, on the portion of figure 2 corresponding to m = 1.0, are the
asymptotic results from an expansion in powers of g~ (eq. (20a)). These are
seen to be much worse than the ones actually used, which prompted the remarks
above on choice of expansion for the temperature.

Although not shown, a few calculations for a disk with a thinner wall
(po = 0.5) indicate that agreement between exact and approximate results for
small T 1s even better than for pg = 0.15. A concomitant which must be
accepted is that these results will become less adequate for thicker walls,
that is, for p, < 0.15 say. If the error becomes unacceptable for such small
Po» it may prove profitable to use Goldstein's device (ref 15) in which func-
tions of (qpo) are expanded for small rather than for large argument.

Approx1matlon for the integral I(p,po,T) - The integral defined in equa-~

tion (104) must be calculated before the displacement and stresses can be
found. Using the form (17) for the temperature, it is found that

To(p5PgiD)

-1 [P
% [mBo(aps) - apeB;(aegs)] f p.Bo(ap )dp,
Po

n  PB ,(ap) - 6B, (ape)
P9 mBo(apo) - aPoB(APo)

(23)
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Straightforward expansion using the asymptotic formulse (18a) gives

e A GRS e

8p=(q + 7)
where again

y = =L (3 + Py + 8m)
8po

This result can be inverted to yleld

Io(p,pp5T)

1/ 2
B L |- I rET L 3 T 3
_m{72[1+27<ﬂ> + e erfe (7&)](1 5 1+pO:J 7<1+DO>}
-m (2L (1 - L <} + i;ﬂ{}erfc P~ Po y 2y0/7 ierfc £ %
o \ 7= L 8y P =N =N

P P . p=-p
+ exply(p - DO) + y27] erfe <}§U¥—9 + %J?>}>+ é; 1+ %> hriZerfe —E;ﬁrg

(2khp)

The result in equation (2bb) is adequate for the smaller values of the
parameter m shown in figure 3, but the accuracy is falling off as m
increases. It i1s possible to improve the approximation somewhat for larger
values of m by the same device that was used above for the temperature:

Io= Iy + (Ig - In) (25)

and expanding the difference expression separately. The expansion of IA for
small T will be given later. The difference expression is, for large g,

1 qpoBl(qpo) QB_-;_(qp) d DoBl(qDo)
PL By(apy)  mBy(ape) ~ apeB,(any)

p(q+7){~/‘[l+—l+*+——> ppo}-l—gla<ﬁ75+l>}

(25a)

IC-IA=
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Figure 3.- Comparison of exact and approximate (small 1) results for the integral I(c, 003 ).
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The last expression can be inverted to give, for small T3

. 1 /P P - Po <p - Po ) }
I~ I, = = |[&= <erfg e——— - ¢ P - p + y=2 erfe | ——— +
¢~ Tas ey /Do {e 2? xp[( o) + 72r] c 2«/? W

L[ 3,4 i o
+ 872-\/;_; <l + 5 + b;) { EXP[')'(O pO) + 72'1’] erfec <_2\/;___O + 7\/?)

- - 2
- erfec BEU=2Q + 2T ierfe 253:29}-- % [l - 7T erfe (%JF)J
T

=
1 7 y2 /2
- 5;5 <%5 + ;} [e T erfec (W7) - 1 + 2y <§> J (25b)

In order to use this expression in the calculation of I~, it is necessary
to have the small 1 expansion for I,. This is given below, together with
that for Igp.

i/2
. . p -0
IA(Q)QOJT) = Pp {2<-};> + -élpr; - ,F_;DS ‘7271/21erfc -2_\/—_-;-_0
1 <l 3> {2 P - po]}
+ =l +2) 7i%erfc ——2 (26)
2 \Po A T
Ip(P,p0sT) 2 1 - [ [l#'rizerfc £- % _ 3 <i - i} w32 13erre 27 Po ]
o NS a7 Po P, N
(27)

Finally, it is necessary to know the values taken by the integral
I(p,po;T) when p = 1. That it is not strictly correct simply toput p =1
in the foregoing approximate expressions is obvious because the terms in

- 1~
e a(2-0) were eliminated on the basis that p is not close to unity. Thus,
by the Wronskian of IO(Z), K (z)

while the approximation (18a) gives, when the negative exponential is
neglected,

Ll L
B,(q) = <} t &
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Thus, by putting 0 = 1 before using the asymptotic expressions, it is found

that
1/ 2

. 2 1/ 2 1l-p
I, (L,0057) = 0 {2<I> +L-__[2¢ erfec ——=2
AN RO o 1 205  JPo L "NEs

+ 2 <;; - #> riZerfe 3—1-59] ) (28a)
Po T -j

. 2 . 1~ % 3 a/2;3 1 - Po
I(lp.T)=T-__I:lt'rlzerfc—-——<—+l T i“erfc ———
B\+2 P2 NG = °o 2JT

(28b)

1/
Ic(l;poi’r) =m {;15 ’71 - gl; <pio + l>}(e72”rerfc <7'rl/2> -1+ 2y <?Tt> 2j|

1-Pg) +y2 - /
+ 'E_BL _g’_ + l> -r} N N [>e7( po) 7 Terfc <-];—17—g + 7Tl/2>
4 o 72p iz L 2T

o]

- erfc 1o P, oyt 2ierfe Lo 6o :' (28c)
orl/2 olf2

. . Po 1 (7 ) J < -yZT ) o (1 > <’r\ Ya
- R i< [ T S G - - o (L 1) (x
Ig - I - 5 [ 5 \&c + 1-~e erfe W by o2 + n)

Jo 7 (1-00)+727 - ‘ -
+2—o-<l— 1 >[e © erfe l——p9+7~/?)~erfcl—-—%2
Y 2700 NG NG

2 J7 ierfc 1 fo (284)

S 2T

Figure 3 shows comparison of exact and approximate results for the inte-
gral I(p,pO;'r) . They appear to be of better reliability than those shown
earlier for the temperature, probably because they represent integrated gquan-
tities. The same convention on multiplication by Biot number m applies here
as for the temperatures in figure 2.

CATCUILATION OF TEMPERATURE AND STRESSES

The calculations amount essentially to summing the series derived in pre-
vious sections, such as equation (6), and determining the integral I(p,po,‘-r)

23



(see eq. (lOd)). A series expansion of this integral will be given below.
Although the series are convergent, the favorable damping due to the factor

2
e-Hn T in each term is somewhat delayed when T 1s small, say 1 < 1072, In
this event it 1s sometimes necessary to consider upwards of 30 terms of the
series in order to achieve four significant figures. Fortunately, the terms
alternate in sign so the maximum error (and its sign) caused by stopping at a

given term is known.

Calculation of Eigenvalues

Determination of the sums indicated in equations (6), (7), (8) and of the
integral in (lOd) requires that the eigenvalues “n(@n: Bn) be found. These
are defined by equation (6a) ((7a), (8a)). It is possible to derive approxi-
mate expressions for the eigenvalues when n i1s large by making use of the
asymptotic expressions for the Bessel functions (see ref. 17). Denote, for

large values of the argument,

1/ 2
Jo(x) ~ <§§> [Po<x)cos X - Qo(x)sin xl]

o \V2 .
Jl(x) ~ <%§ [Pl(x)51n x, ¥ Ql(x)cos xl]

> (29)

ji\l/g .
Yo(x) ~ [Po(x)sin x, + Qy(x)cos xl]

X 1
o 2 .
Yl(x) ~ <%§ [-Pl(x)cos X, + Ql(x)51n xl] J
where o
P (X) - ('l) (J,Em)
=0 (2x)2m
e =Z' (-1)"(3,2m + 1)
mmo  (2x)®
(30) = e {52 - 22 (7 = 33 L b2 - (- 12
and x
X, =X - m
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These expressions are now to be inserted in equation (6a). The result is

m[Po(x)Qo(pox) - Polrox)Qo(x)] - pox[Po(x)P (pox) + Qo(x)Q;(pox)]

tan(l-po)x =
m[Po(x)Po(ppx) + Qo(x)Qs(Pox)] + Pox[Po(x)Q,(pox) - P, (pox)Qg(x)]

(30)

where Xx now stands for the eigenvalues pp. To solve for those eigenvalues,
a process of successive approximation can be used, starting by neglecting all
but lowest powers of x~1 in the expression on the right. For example, in the
first approximation

X
tan(l - pO)X~ - -7—
This relation shows the characteristic behavior of the well-known transcenden-
tal equation
tan x = -x

That is, the nth root approaches [n - (1/2)]x as n increases. In the
present case, the first approximation to the eigenvalue W, for large n is

2
i l } e o~ - + Y
| } ? 1-0 1
! O - =

o < I
| ' ql
! Lo

|

|

‘ . Further approximations can be obtained
. , o if desired, if the result (31) is sub-
f Pl stituted into equation (30) and terms

involving higher powers of

‘;imo ' — {[n - (l/2)]ﬁ}-lare determined.

(31)

Such approximations were not used
(except for checking purposes) in the
present calculations. It was found as
easy to use the complete frequency
4 equation (6a) and determine the roots
by means of a simple interpolatory pro-
::\\\\\ cedure. A standard program for Bessel
:i\\\\;\\\\_ . functions was used when the argument

— |

N

=
x < 20, and extensions made by use of
a'e'so ' 20 ' 40 608670 the asymptotic formulae (29). Figure b4
shows the variation of the eigenvalues

[/ /

——t—]

Figure 4.- Variation of the eigenvalues My

with n, and with Biot number m (actually pn/[n - (1/2)?(]) with n,
(GQ- (63): Po = 0'15)'
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and also with the Biot number m which appears as a parameter in the fre-
quency equation. Limiting values m -» o Where WHp - an and m = O where

Mn = By are shown. The eigenvalues for m = 100, 0.01 are nearly indistin-
guishable from those for m -» o, O, respectively. This particular graph is

drawn for Py = 0.15, so the limiting value as n -» « 18

=1.18 . . .

lim B = 1
Hvoo <% - %)ﬁ 1 -0,

Summation of Series Expressions

Once the eigenvalues are known, one can continue with the summation pro-
cess. In this, it was found adequate, for 1 > 5X10"%, to provide for using,
at most, 50 terms of the series. The computation halted automatically at a
value of n such that the corresponding term was less in absolute magnitude

than 1X10~7.

The integral I(p,pogT) defined in equation (10d) can also be expressed
as an infinite series. Using equation (6) for temperature, it is found that

To (g3 T)
2 - 2
= m [p o™ , 1 <}2 log L. p 2 log j;> ]
7 L E P ° Po
1 +m log —f>
Po
L 2 2
- on2 Z e Hn JO (IJ'H) e
, 2 2
n=1 Mo [mIg(eghy) + ook T (egiy) 17 - (m® + 0 20, 2) T 2(1))

oo i oM 3 (1) InTg(potin) + 0obtnd 1 (Pohg) 10T, (pu Yo (i) = ¥, (ong )4 (1) ]

2
Pn [mJo<po“n) + pounJl(pOHn)] - (m® + Pozunz)Joz(Hn)

(32)

The results for cases A and B can be obtained from equation (32) by suitable
limiting processes performed on me. Results of the calculations outlined above

will be presented in the next section.

RESULTS OF COMPUTATIONS
There are an enormous number of possibilities for calculating the
stresses, even though the parameters E, a(AT), a, k appear in dimensionless
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ratios. A selection from the remaining ones, m, VvV, p_, was made which was
thought to give a representative selection of cases for different regimes. It
is hoped that the cases detailed here will enable one to obtain at least a
qualitative notion of the magnitudes and distributions of temperatures,
stresses, or displacements in a wide variety of situations. There are avallable
also the fairly simple results for the steady-state values and for the initial
variations derived above. These formulae are of course quite general insofar
as assigning the parameters m, Vv, Py 1s concerned.

Effect of Variation of Biot Number m

Free outer boundary.- The first case examined is for a fixed geometry

(pg = 0.15) and Poisson's ratio (v = 0.25), with the Biot number m allowed
to vary between its extremes of O and . All quantities of interest are shown
in figures 5 through 9, including curves of the integral I(p,po;T) (see

egs. (10d) and (32)). The curves are drawn so that the variation of each quan-
tity with p is shown for values of T covering the range 0.0005 < 7 < 2.

The latter value of 1 1s one for which the system has essentially reached its
steady state, as indicated by the near identity of the calculations for + =1
and T = 2. The integral I(p,po;T) is shown so that the present calculations
can easily be extended to stress boundary conditions other than the vanishing
of radial stress at p = pg and p = 1. (Some results for the boundary condi-
tion of a rigid outer wall will be shown later.) Also, the internal pressure
Po 1is zero in the calculations for the stresses and displacement; its effect
may be included by use of equations (11) or (12).

The values of m for which results are shown are m = 0(.01), 0.1, 1, 10,
©(100). The numbers in parentheses indicate that the corresponding results
differ so little from the results for m = 0 and m » » that they are plotted
on the same graph, insofar as they are distinguishable. As discussed above, a
difference exists in the dimensionless groups representing temperature, dis-
placement, and stress according as m< 1l orm>1. For m< 1, m dis included
in the denominators in order that the dimensionless quantities Va approach
the proper values at m - O, corresponding to the constant flux case. For
m>1,m is not included in the dimensionless groups so that the proper limits
result as m - o, corresponding to the case of sudden change of temperature at
p = pg+ Thus, for example,

2 T = T
Vo = m 1.6 12 for m<1
Ty - T,
Tn - T
= _C 1 for m>1
Ty - T,

This also applies to I(p,po;T).
The graphs of the radial temperature distributions show characteristic

behavior; the temperature at first rises quickly in a thin layer of material at
the inner surface, and the temperature gradient across this layer increases
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Figure 5.- Transient temperature and stresses for the internally heated disk. Case B; zero stress at
P = pgand p = 1.
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with me. The curves of displacement show, for all values of m, a rather weak
maximum at an interior point which moves toward the outer boundary as time
increases. The radial stress, which is here zero at both boundaries because
po = O, shows similar behavior, although the extremum is much accentuated as

T increases. It is, for T4 > T,, compressive throughout, and its position of
numerical maximum moves from the inner wall for T << 1 +toward the wvalue

P = peyr predicted in the section on steady-state behavior (eq. (152)).

In the case of the circumferential stress, a flat extremum occurs at first
near the inner boundary, moving to and past the outer boundary as time
increases. The value at p = p, 1s the largest compressive stress,and the
largest tensile stress occurs eventually at p = 1. The maximum compressive
stress is larger in magnitude than the largest tensile stress, and also larger
by a factor of 3 to 5 (depending on m) than the maximum radial compressive
stress. The behavior of the circumferential stress distributlon is in some
respects similar to that of the temperature distribution for small values of
Te That is, it is nonvanishing only in a thin layer near the inner surface,
the magnitude at the inner surface and the thickness of the layer increasing
with time. For the more intense heating (m > l) the maximum compressive clr-
cumferential stress, at p = Pgs 0O longer occurs in the steady state as it
does for the m < 1 cases. This behavior carries over into the stress differ-
ence (or* - 09*), and figure 10 shows this maximum value as a function of time

for the values m = 1, 10, «. The
curve for m = 1 is characteristic of

those for the smaller values of m
9 also.
Bf\\::: | M=o . Finally, in figures 5 through 9,
2 ‘ “‘“T* ! “100 —  the stress difference (or* - 09*)
! gives a measure of the maximum shearing

stress to be found at any point. At
o the boundaries, this quantity is domi-
nated by the circumferential stress,
and it falls to zero and changes sign
somewhat closer to the inner boundary
than does 09*.

£
&
-
vud o

|

Rigidly restrained outer boundary.-

In order to gain some notion of the

0 2 4 6 I o effect of a rigid outer boundary, a few
i 111 be given in which th
Figure 10.- Behavior of maximum shearing curves wi € given 1 ¢ € .
stress (op% = 0g¥) for several values Yesults for a free boundary and a fixed
of mpg = 0.15, v = 3.25). boundary are compared. These are drawn

only for m =0, 1, « and for values
of 1 which show the starting behavior and steady state as well as the transi-
tional interval. Also, only the displacement and stress difference are shown.
Figure 11, where the displacements for the three values of m are given, shows
that initially (+ = 0.005), the differences between the displacements in the
cases of zero and complete restraint are rather small. However, as time goes
on, the differences increase and, as expected, the free displacements are ulti-
mately considerably greater throughout than those for a rigid restraint. These
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effects increase in magnitude with the intensity of heating, as would also be
expected.

Figure 12 illustrates the differences between the values of (cr' - 69')
and (or* - 09*), corresponding to fixed and free outer boundaries, respectively.
The variation is seen to be similar over the range py < p < 1, the fixed
boundary giving the higher magnitudes. Again, differences are heightened by
increasing T and by intensification of heating, or increasing the Biot
number me.

Effect of Poisson's Ratio Vv

In the free-boundary case, only the displacement u* dis affected by a
change of Poisson's ratio. Figure 13 shows the magnitude of the effect for the
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30
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Figure 13.- Effect of Poisson's ratio v on displacement u*(po = 0.15).

extreme cases m = 0, ©¥. TIn all cases, the magnitude of the displacement
increases with V. In the most severe heating (m = =), the change in displace-
ment due to a change in Vv i1s sizable at its maximum, even for the smallest
value of 7 (7 = 0.005) considered.

Similar results for the stress difference (or' - 0,.') in the fixed bound-
ary situation appear in figure 1Lk. Here, for ¢ = 0.005 and m = », the effect
of altering Vv does not appear to be proportionately as great as it was for
the displacement results shown above.

The Influence of Wall Thickness
The differences between the solutions under various heating inputs and

restraint conditions for differing values of the geometrical parameter p, Bare
somewhat more difficult to predict than those found in the parameter surveys
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Figure 15.- Variation of maximum shear (o.* - 0,%) in thin-walled disk (p, = 0.90, v = 0.25).
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Figure 16.- Variation of meximum shear (o,.* - 0g*) in thick-walled disk (p, = 0.05, v = 0.25).
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considered asbove. First, figures 15 and 16 show stress differences for widely
different wall thicknesses (po = 0.05 and O-90) for a free outer boundary, and
for the extreme heating conditions m = 0, ©. In the case of the thin wall
(po = 0.90, fig. 15), the steady-state distributions appear nearly linear for
both heating conditions, while the starting distributions (1 = 0.0005) are
somewhat simpler than those given previously for Py = 0.15; that is, no trace
of an internal extremum in stress difference remains.

In figure 16, the results for stress difference in a very thick ring are
given. Here the stress gradient near the inner surface is much greater than in
the thin-ring of figure 15. A definite interior extremum exists for small T,
and there is a greater concentration of the stress near the inner surface at
the initiation of heating.

Figures 17 and 18 show the quantities corresponding to those in figures 15
and 16, only for the stress-boundary condition of rigid restraint at p = 1.
The character of these figures is analogous to-that of the corresponding ones
for a free outer boundary, with the expected larger values at p = 1 due to the
rigid restraint.
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Figure 17.- Variation of maximum shear (o.' - og') in thin-walled disk (p, = 0.90, v = 0.25).
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CONCLUDING REMARKS

The present calculations should be useful in determining heating which
will keep the stresses below some allowable maximum, as 1llustrated for other
configurations by Heisler in reference 1.

The thermal stresses can become considerable, as the following example
will show. For the case shown in figure 7T, the maximum stress is given by the
value of o0g* at the inner wall in the steady state. It is

|omax| = (0-5)a(Ty ~ T,)E

For several materials, such as aluminum or steel, the expansion coefficient a
has a value roughly 1x1075/°K to 2x1075/9K. If the temperature difference is
Ty - T, = 200° K, the meximum stress is in the range EX10~3 to 2Ex10"3. (If
the object considered is a pipe rather than a disk, this stress is divided by
1 - v. For the materials mentioned, this amounts to taking about h/3 the
above results.)
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Now, as discussed by Nddai in reference 13(ch. 13), the various factors of
dependence of material constants upon temperature and the onset of plastic flow
should be taken into account when thermal stresses become severe. If it is
desired to keep the stresses below the level at which these new effects enter,
the calculations above will serve to define limits on the heating, or dimen-
sions, or other parameters which will so confine these thermal stresses.

Ames Research Center
National Aerocnautics and Space Administration
Moffett Field, Calif., Sept. 17, 1965
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APPENDIX
SYMBOLS

outer and inner radii of annular disk or hollow cylinder
1(2)K () - I (a)K(2)

1. (2)K(a) + I ()X (2)

(po - 1)/pg (eq. (21))

Young's modulus

surface heat-transfer coefficlent (eq. (Mc))

integral arising in stress calculation (eq. (104))

modified Bessel functions of zero order, of first and second
kinds

Bessel functions of zero order of first and second kinds
thermal conductivity

Biot number, hb/k

Iaplace transform variable

internal pressure and dimensionless internal pressure

p1/2

radial coordinate

time

temperature

boundary conditions, equations (4)
temperature of medium in r < b

initial temperature of solid
displacement in thermally strained body

dimensionless temperature ratio, (TA - Tl)/(TO - Tl)




Gn

Pn

(g - T,)/(b/x)

(Tg - T)/(Tg - T,) if m> 15 (Tg - T,)/m(To - To) if m<1
axial distance along a cylinder

coefficient of thermal expansion

eigenvalue, equation (7a)

(3 + po)/og (eq. (22))

eigenvalue, equation (8a)

g%_(g + po + Bm)(see eq. (19))

o

thermal diffusivity

eigenvalue (eq. (6a))

Poisson's ratio

dimensionless radial coordinate; r/a
b/a

radial and circumferential stresses
axial stress

dimensionless time variable; nt/aZ

stress condition of free outer boundary

stress condition of rigidly restrained outer boundary
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